首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10361篇
  免费   1184篇
  国内免费   5篇
  2021年   140篇
  2020年   92篇
  2019年   123篇
  2018年   152篇
  2017年   142篇
  2016年   221篇
  2015年   378篇
  2014年   431篇
  2013年   518篇
  2012年   666篇
  2011年   652篇
  2010年   408篇
  2009年   375篇
  2008年   504篇
  2007年   575篇
  2006年   548篇
  2005年   513篇
  2004年   503篇
  2003年   471篇
  2002年   460篇
  2001年   247篇
  2000年   268篇
  1999年   236篇
  1998年   163篇
  1997年   119篇
  1996年   108篇
  1995年   94篇
  1994年   104篇
  1993年   91篇
  1992年   172篇
  1991年   141篇
  1990年   138篇
  1989年   123篇
  1988年   117篇
  1987年   116篇
  1986年   100篇
  1985年   110篇
  1984年   88篇
  1983年   74篇
  1982年   68篇
  1981年   80篇
  1980年   69篇
  1979年   90篇
  1978年   51篇
  1977年   66篇
  1976年   51篇
  1975年   71篇
  1974年   71篇
  1973年   45篇
  1972年   46篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Monocytes and monocytic cells produce proinflammatory cytokines upon direct cell contact with activated T cells. In the autoimmune disease rheumatoid arthritis, the pivotal role of TNF-alpha implies that the interaction between transmembrane TNF-alpha (mTNF) and the TNF receptors (TNFR1 and TNFR2) might participate in the T cell contact-dependent activation of monocytes. Accordingly, treatment of rheumatoid arthritis by administration of a TNF-alpha-blocking Ab was found to significantly decrease TNF-alpha production by monocytes. Several lines of evidence indicated that signaling through TNFR1/2 and through mTNF (reverse signaling) is involved in TNF-alpha production by monocytes after T cell contact: 1) blocking mTNF on activated T cells leads to a significant reduction in TNF-alpha production; 2) down-regulation of TNFR1/2 on monocytes by transfection with small interfering RNA results in diminished TNF-alpha production; 3) blocking or down-regulating TNFR2 on activated T cells inhibits TNF-alpha production, indicating that mTNF on the monocyte surface mediates signaling; 4) ligation of mTNF on monocytes by surface TNFR2 transfected into resting T cells induces TNF-alpha production due to reverse signaling by mTNF; and 5) ligation of mTNF on monocytes by a soluble TNFR2:Ig receptor construct induces TNF-alpha production due to reverse signaling. In conclusion, we identified mTNF and TNFR1/2 as interaction partners contributing to TNF-alpha production in monocytes. Both pathways initiated by mTNF-TNFR interaction are likely to be inhibited by treatment with anti-TNF-alpha Abs.  相似文献   
992.
We investigated the role of neutrophil elastase (NE) in interactions between murine inflammatory neutrophils and macrophages infected with the parasite Leishmania major. A blocker peptide specific for NE prevented the neutrophils from inducing microbicidal activity in macrophages. Inflammatory neutrophils from mutant pallid mice were defective in the spontaneous release of NE, failed to induce microbicidal activity in wild-type macrophages, and failed to reduce parasite loads upon transfer in vivo. Conversely, purified NE activated macrophages and induced microbicidal activity dependent on secretion of TNF-alpha. Induction of macrophage microbicidal activity by either neutrophils or purified NE required TLR4 expression by macrophages. Injection of purified NE shortly after infection in vivo reduced the burden of L. major in draining lymph nodes of TLR4-sufficient, but not TLR4-deficient mice. These results indicate that NE plays a previously unrecognized protective role in host responses to L. major infection.  相似文献   
993.
Human Hint3 (hHint3) has been classified as a member of the histidine triad nucleotide (Hint) binding protein subfamily. While Hint1 is ubiquitously expressed by both eukaryotes and prokaryotes, Hint3 is found only in eukaryotes. Previously, our laboratory has characterized and compared the aminoacyl-adenylate and nucleoside phosphoramidate hydrolase activity of hHint1 and Escherichia coli hinT. In this study, hHint3-1(Ala36) and its single nucleotide polymorphism, hHint3-2 (A36G variant), were cloned, overexpressed, and purified. Steady-state kinetic studies with a synthetic fluorogenic indolepropinoic acyl-adenylate (AIPA) and with a series of fluorogenic tryptamine nucleoside phosphoramidates revealed that hHint3-1 and hHint3-2 are adenylate and phosphoramidate hydrolases with apparent second-order rate constants (kcat/Km) ranging from 10(2) to 10(6) s(-1) M(-1). Unlike hHint1, hHint3-1 and hHint3-2 prefer AIPA over tryptamine adenosine phosphoramidate by factors of 33- and 16-fold, respectively. In general, hHint3s hydrolyze phosphoramidate 370- to 2000-fold less efficiently than hHint1. Substitution of the potential active-site nucleophile, His145, by Ala was shown to abolish the adenylate and phosphoramidate hydrolase activity for hHint3-1. However, 0.2-0.4% residual activity was observed for the H145A mutant of hHint3-2. Both hHint3-1 and hHint3-2 were found to hydrolyze lysyl-adenylate generated by human lysyl-tRNA synthetase (hLysRS) by proceeding through an adenylated protein intermediate. hLysRS-dependent labeling of hHint3-1 and hHint3-2 was found to depend on His145, which aligns with the His112 of the Hint1 active site. The extent of active-site His145-AMP labeling was shown to be similar to His112-AMP labeling of hHint1. In contrast to all previously characterized members of the histidine triad superfamily, which have been shown to exist exclusively as homodimers, wild type and the H145A of hHint3-1 were found to exist across a range of multimeric states, from dimers to octamers and even larger oligomers, while wild type and the H145A of hHint3-2 exist predominantly in a monomeric state. The differences in oligomeric state may be important in vivo, because unlike tetracysteine-tagged Hint1, which was found along linear arrays exclusively in the cytoplasm in transfected HeLa cells, tagged Hint3-1 and Hint3-2 were found as aggregates both in the cytosol and in the nucleus. Taken together, these results imply that while Hint3 and Hint1 prefer aminoacyl-adenylates as substrates and catalytically interact with aminoacyl-tRNA synthetases, the significant differences in phosphoramidase activity, oligomeric state, and cellular localization suggest that Hint3s should be placed in a distinct branch of the histidine triad superfamily.  相似文献   
994.
The protective effect of pituitary adenylate cyclase-activating polypeptide (PACAP) in stroke models is poorly understood. We studied patterns of PACAP, vasoactive intestinal peptide, and the PACAP-selective receptor PAC1 after middle cerebral artery occlusion and neuroprotection by PACAP in cortical cultures exposed to oxygen/glucose deprivation (OGD). Within hours, focal ischemia caused a massive, NMDA receptor (NMDAR)-dependent up-regulation of PACAP in cortical pyramidal cells. PACAP expression dropped below the control level after 2 days and was normalized after 4 days. Vasoactive intestinal peptide expression was regulated oppositely to that of PACAP. PAC1 mRNA showed ubiquitous expression in neurons and astrocytes with minor changes after ischemia. In cultured cortical neurons PACAP27 strongly activated Erk1/2 at low and p38 MAP kinase at higher nanomolar concentrations via PAC1. In astrocyte cultures, effects of PACAP27 on Erk1/2 and p38 were weak. During OGD, neurons showed severely reduced Erk1/2 activity and dephosphorylation of Erk1/2-regulated Ser112 of pro-apoptotic Bad. PACAP27 stimulation counteracted Erk1/2 inactivation and Bad dephosphorylation during short-term OGD but was ineffective after expanded OGD. Consistently, PACAP27 caused MEK-dependent neuroprotection during mild but not severe hypoxic/ischemic stress. While PACAP27 protected neurons at 1–5 nmol/L, full PAC1 activation by 100 nmol/L PACAP exaggerated hypoxic/ischemic damage. PACAP27 stimulation of astrocytes increased the production of Akt-activating factors and conferred ischemic tolerance to neurons. Thus, ischemia-induced PACAP may act via neuronal and astroglial PAC1. PACAP confers protection to ischemic neurons by maintaining Erk1/2 signaling via neuronal PAC1 and by increasing neuroprotective factor production via astroglial PAC1.  相似文献   
995.
The neurotrophin receptor tropomyosin-related kinase A (TrkA) and its ligand nerve growth factor (NGF) are expressed in astrocytomas, and an inverse association of TrkA expression with malignancy grade was described. We hypothesized that TrkA expression might confer a growth disadvantage to glioblastoma cells. To analyze TrkA function and signaling, we transfected human TrkA cDNA into the human glioblastoma cell line G55. We obtained three stable clones, all of which responded with striking cytoplasmic vacuolation and subsequent cell death to NGF. Analyzing the mechanism of cell death, we could exclude apoptosis and cellular senescence. Instead, we identified several indications of autophagy: electron microscopy showed typical autophagic vacuoles; acridine orange staining revealed acidic vesicular organelles; acidification of acidic vesicular organelles was prevented using bafilomycin A1; cells displayed arrest in G2/M; increased processing of LC3 occurred; vacuolation was prevented by the autophagy inhibitor 3-methyladenine; no caspase activation was detected. We further found that both activation of ERK and c-Jun N-terminal kinase but not p38 were involved in autophagic vacuolation. To conclude, we identified autophagy as a novel mechanism of NGF-induced cell death. Our findings suggest that TrkA activation in human glioblastomas might be beneficial therapeutically, especially as several of the currently used chemotherapeutics also induce autophagic cell death.  相似文献   
996.
We have analyzed the importance of specific amino acids in the cytoplasmic tail of the glycoprotein G(N) for packaging of ribonucleoproteins (RNPs) into virus-like particles (VLPs) of Uukuniemi virus (UUK virus), a member of the Bunyaviridae family. In order to study packaging, we added the G(N)/G(C) glycoprotein precursor (p110) to a polymerase I-driven minigenome rescue system to generate VLPs that are released into the supernatant. These particles can infect new cells, and reporter gene expression can be detected. To determine the role of UUK virus glycoproteins in RNP packaging, we performed an alanine scan of the glycoprotein G(N) cytoplasmic tail (amino acids 1 to 81). First, we discovered three regions in the tail (amino acids 21 to 25, 46 to 50, and 71 to 81) which are important for minigenome transfer by VLPs. Further mutational analysis identified four amino acids that were important for RNP packaging. These amino acids are essential for the binding of nucleoproteins and RNPs to the glycoprotein without affecting the morphology of the particles. No segment-specific interactions between the RNA and the cytoplasmic tail could be observed. We propose that VLP systems are useful tools for analyzing protein-protein interactions important for packaging of viral genome segments, assembly, and budding of other members of the Bunyaviridae family.  相似文献   
997.
RNA silencing is a potent means of antiviral defense in plants and animals. A hallmark of this defense response is the production of 21- to 24-nucleotide viral small RNAs via mechanisms that remain to be fully understood. Many viruses encode suppressors of RNA silencing, and some viral RNAs function directly as silencing suppressors as counterdefense. The occurrence of viroid-specific small RNAs in infected plants suggests that viroids can trigger RNA silencing in a host, raising the question of how these noncoding and unencapsidated RNAs survive cellular RNA-silencing systems. We address this question by characterizing the production of small RNAs of Potato spindle tuber viroid (srPSTVds) and investigating how PSTVd responds to RNA silencing. Our molecular and biochemical studies provide evidence that srPSTVds were derived mostly from the secondary structure of viroid RNAs. Replication of PSTVd was resistant to RNA silencing, although the srPSTVds were biologically active in guiding RNA-induced silencing complex (RISC)-mediated cleavage, as shown with a sensor system. Further analyses showed that without possessing or triggering silencing suppressor activities, the PSTVd secondary structure played a critical role in resistance to RISC-mediated cleavage. These findings support the hypothesis that some infectious RNAs may have evolved specific secondary structures as an effective means to evade RNA silencing in addition to encoding silencing suppressor activities. Our results should have important implications in further studies on RNA-based mechanisms of host-pathogen interactions and the biological constraints that shape the evolution of infectious RNA structures.  相似文献   
998.
During gestation there is a high demand for the essential nutrient choline. Adult rats supplemented with choline during embryonic days (E) 11-17 have improved memory performance and do not exhibit age-related memory decline, whereas prenatally choline-deficient animals have memory deficits. Choline, via betaine, provides methyl groups for the production of S-adenosylmethionine, a substrate of DNA methyltransferases (DNMTs). We describe an apparently adaptive epigenomic response to varied gestational choline supply in rat fetal liver and brain. S-Adenosylmethionine levels increased in both organs of E17 fetuses whose mothers consumed a choline-supplemented diet. Surprisingly, global DNA methylation increased in choline-deficient animals, and this was accompanied by overexpression of Dnmt1 mRNA. Previous studies showed that the prenatal choline supply affects the expression of multiple genes, including insulin-like growth factor 2 (Igf2), whose expression is regulated in a DNA methylation-dependent manner. The differentially methylated region 2 of Igf2 was hypermethylated in the liver of E17 choline-deficient fetuses, and this as well as Igf2 mRNA levels correlated with the expression of Dnmt1 and with hypomethylation of a regulatory CpG within the Dnmt1 locus. Moreover, mRNA expression of brain and liver Dnmt3a and methyl CpG-binding domain 2 (Mbd2) protein as well as cerebral Dnmt3l was inversely correlated to the intake of choline. Thus, choline deficiency modulates fetal DNA methylation machinery in a complex fashion that includes hypomethylation of the regulatory CpGs within the Dnmt1 gene, leading to its overexpression and the resultant increased global and gene-specific (e.g. Igf2) DNA methylation. These epigenomic responses to gestational choline supply may initiate the long term developmental changes observed in rats exposed to varied choline intake in utero.  相似文献   
999.
Hepatitis C virus core protein forms the viral capsid and is targeted to lipid droplets (LDs) by its domain 2 (D2). By using a comparative analysis of two hepatitis C virus genomes (JFH1 and Jc1) differing in their level of virus production in cultured human hepatoma cells, we demonstrate that the core of the genotype 2a isolate J6 that is present in Jc1 mediates efficient assembly and release of infectious virions. Mapping studies identified a single amino acid residue in D2 as a major determinant for enhanced assembly and release of infectious Jc1 particles. Confocal microscopy analyses demonstrate that core protein in JFH1-replicating cells co-localizes perfectly with LDs and induces their accumulation in the perinuclear area, whereas no such accumulation of LDs and only a partial co-localization of core and LDs were found with the Jc1 genome. By using a fluorescence recovery after photobleaching assay, we found that green fluorescent protein-tagged D2 variants are mobile on LDs and that J6- and JFH1-D2 differ in their mobility. Taken together, our results demonstrate that the binding strength of the D2 domain of core for LDs is crucial for determining the efficiency of virus assembly.  相似文献   
1000.
ADAM10 is a disintegrin metalloproteinase that processes amyloid precursor protein and ErbB ligands and is involved in the shedding of many type I and type II single membrane-spanning proteins. Like tumor necrosis factor-alpha-converting enzyme (TACE or ADAM17), ADAM10 is expressed as a zymogen, and removal of the prodomain results in its activation. Here we report that the recombinant mouse ADAM10 prodomain, purified from Escherichia coli, is a potent competitive inhibitor of the human ADAM10 catalytic/disintegrin domain, with a K(i) of 48 nM. Moreover, the mouse ADAM10 prodomain is a selective inhibitor as it only weakly inhibits other ADAM family proteinases in the micromolar range and does not inhibit members of the matrix metalloproteinase family under similar conditions. Mouse prodomains of TACE and ADAM8 do not inhibit their respective enzymes, indicating that ADAM10 inhibition by its prodomain is unique. In cell-based assays we show that the ADAM10 prodomain inhibits betacellulin shedding, demonstrating that it could be of potential use as a therapeutic agent to treat cancer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号